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Following Nelmark [l-31, the author obtains necessary and sufficient 
conditions for stability of various possible types of periodic motions 
for a particular kind of second order dynamic systems near piece-wise 
linear ones that are of special interest in applications. 

1. Nonautonomous systems near piece-wise linear ones. We 

shall consider the system 

Let 

dx ! dt = y, dy I dt = - 9 (xl + Pf (xv YP t) (1.1) 

II) (2) = six + pt if X&_l<X<Xi (i = . . . - 1, 0, I, 2, * . .) 

f (x, Y, t) = w (x9 YI 4 if “i__l<“<“i, Y>O 

f (5, y, t) = U2) (x, Y, 0 if q-~<~<$, Y-CO 

Here the f i 'j' (n, y, t) (j = 1, 2) are analytic functions of period 

2a in t, and p is a small positive parameter. We assume that the system 

(1.1)) with p = 0, has at the origin (x = y = 0) of the coordinate 

system an equilibrium of the type of a center, or a “sewn center.” 

If u # 0, the phase coordinates of the system (1.1) will be x, y and 

t. The points with the same z and y coordinates on the planes t = to 
and t = to + 2m will be considered to be identical. 

We shall denote by S, (l) the half-planes x = xk when y 7 0, and by 

Sk”’ the half-planes when y < 0 (k = . . . -1, 0, 1 . . .). Let us consider 
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the trajectories of the system (1.1) with u = 0 and with ~1 # 0, which 

satisfy the same initial conditions 

X=X o* Y =Yo>O if t=t, (1.2) 

We introduce a new time t = -r t t,, and consider the point transforma- 

tion of mapping the half-plane S,(‘) into the half-plane .‘$(j)(j = 1,2). 

Suppose that a phase trajectory of the system (1.1) , when p = 0, 

intersects the half-planes S,(j) at the points Pko(j)(xk, yko(j), -rkbj)), 

and when P # 0 at the points Pk(j)(rk’ yk(j), -rk(j)). We shall prove 

that 

(1.3) 

I;ere L,(j) is an integral curve of the system (1.1) when u = 0 which 

joins the point P,(x,, y,,, 0) to the point Pk,,(j)(xk, y,,(j), ‘ko 
(iI)_ 

We will prove first that the formulas (l.,?) are valid if one trans- 

forms the ha1 f-plane So (‘). For the sake of definiteness let us assume 

that in the strip between the half-planes So(‘) and S,“’ the function 

y(x) has the form 

‘The solution of the system (1. l), with ~1 = 0, which satisfies the 

conditions (1.2) has the form 

2 = 
( 
z,--’ 

Qh* 1 
coso,z+ !I0 ~sin olr+ 3 = alo (f, 90) 

y=-( x0 - $) o1 sin qz + yO cos olz = PI, (Z, yO) 

Representing the solution of the system (1.1) with p # 0, which 

satisfies the condition (1.3) in the form of a power series in p, we 

(1.4) 
obtain 

(r - u) du + 
+ CL' (- * .I 

Y = PlO (lb Yo) + pi f l(l) [%o (~9 YO), fL,(u, yo), u + toI coso1 (r -u)du + 

0 +py. * .) 
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Let -rr(‘) be the smallest time interval during which a mapped point 

reaches the half-plane S, ( ’ ) . We can express TV ( ’ ) in the form of a 

series 

Substituting T = vl(l) into the equation (1.4) we obtain 

YP’ = YIP) + 5 \ fP [alo (w yo), Blo (u, y,), u + to] x 
0 

x %21 II( a1 -- 
ol sin 01 (%O 

1 
(')--u) + ?JIO(l) co9 01(z10(1)--u) du + j.P (...) = 1 

= YlO(” + -& \ fl(‘? (x, y, z + to) dx + pa (. . .) 
L,(l) 

q(l) = q,(l) - _!L 

YlO(l'Ol s 
fP [alO (k Y& ho (K h), u + toI x 

0 

x sin 01 (r# - u) du + j.9 (...) s z,,,Q) + pCDlfl) (y,,, to) + p’(...) 

Here L,(l) is a space curve n = alO(T, y,), y = pr,,(-r, y,,) which ex- 

tends from the point P,(x,, yO, 0) to the point Plo(r)(n,, y,,‘“, 

TlO 
(l)). Analogously, one can prove the validity of the formulas (1.3) 

of the transformation of the half-plane S,(l) into s,(l) also for the 

case when 

$3 (x) s a,x + f& z - ol’ 2 + al 

Let us suppose that the formulas (1.3) are valid when one transforms 

the half-plane S,(l) into Sk_, (I) We will prove that they are also . 

valid when one transforms the half-plane so(r) into Sk’ ‘). For the sake 

of definiteness let 

9 (X) f akX + bk z- Ok*X + akc f (Xv y, r + to) s fk(‘) (X9 y, r + t”) 

if zk-~<x<xk 

Expanding into a power series in p the solution of the system (1.1)) 

which satisfies the boundary conditions 

we obtain 
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J-lere r = akO(-r - T,::‘, yki:)), y = pko(r - T$), yk(:)) is a solu- 
tion of the system (l.l), with p = 0, satisfying conditions (1.5). 

Let TV be the instant of time when the mapped point reaches the 
ha1 f-p1 ane S, ( ‘I. We express 7k (1) in the form 

Q’ = r&l’ + p%(l) (j/o, to) + . . . 

Substituting T = T~( ‘) into the equations (1.6), and expanding the 
right-hand sides into a power series in U, we obtain 

Tkt) 

+” (1) 
Y&l' s f/l) [a, (u - T k-1. o’ ?,,c’;,,,h &,,,(” - ‘k$,,’ Y&i?, ,,h ’ + ‘dX 

‘k% o 
x Iy&%oahoI (z $’ - u) - Ok(Xk - ak/Ok”)dabok (‘&.p - u)]du + p”(...) = 

= YkO (1’ + L s Ydl) L (1) 
f (2, yt 7 + to) dx + ~‘(4 

k 

X s 
L;!! 

f (5, yt ‘c + to) dx - y+ \ 
thko (r$’ - u # yk’,‘. 0) 

“,’ 0 
*k-l?, o 

X 

+k -. 
x fktl) fab t” - zk_!\!09 ykLll) ,h p& (’ - T (lb k-1, 0’ Yki’,‘. ,,h ’ + h,] d” + 
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In an analogous manner one can prove the correctness of the formulas 

(1.3) when 

Suppose that in the continued motion the trajectory of the system 

(1.1) when ~1 # 1 intersects the plane y = 0 at a point M(zk*, 0, Tk*)) 

and when p = 0 at the point M,-,(zkO*, 0, -fko*) whereby nk L< zk* \(%k+lS 

xk\< xk/ +k+l’ 

For the sake of definiteness let us assume that 

4 (5) f ak+lz + gk-C1 = - @k&x -t ak+l if Zk<“<Zk+l 

The solution of the system (1.1)) with u + 0, which satisfies the 

conditions 

has tile form 

5 = Xk, y = yp if r=rp) (1.7) 

5 

x = ‘,+I, o (f - s 
sinhok+l(T-u)X 

(1) 
‘k 

,xjk$ ia k+l. o (u - ‘k(l)! ?,k(“), ,$+I, 0 (u - 

y = gk+l. II (’ - p, y,(l)) + p 

zp, y/j”)’ u + 01 t du + p”(...) 
t 

s coLhok+l (‘-‘) x 
(1) 

(1.8) 
‘k 

x/$1 [ak+l, o (u - TX(l), yx(l)), Bk+l. o (u - zk(l), yk(l)), u + toI du + cLY--J 

here ok+1 ,, (T - T’k (l), yk (‘)), pk+l ,)(-f - lk (“, yk (l)) is a solution 

of the systeh (1. l), with p = 0, satisfying conditions (1.7). Let us ex- 

press Tk * in the forms Tk* = TkO* + p@Jk*(yO, t,) + . . . Substituting 

T = vk* into the first one of the equations (1.8) and expanding the ob- 

tained expressions in powers of u, we have 

xk 
*=x x,* + P 

$inh(l)k+i (tk; - r&l)) 

ok+dc? 
\ f (x, y, T + to) dx + 
cw 

Lk 

‘k: 

+& s 
rinb “k+l ko (f * -u) x 

-b (1) 
h-0 
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'lhe solution of the system (l.l), satisfying the conditions 

2 =xk*, y=o if zq* 

when xk < " Xk+lJ Y < 0, can be expressed in the form 

(1.9) 

x = %;l, 0 d"x+1 (z - u) x (1.10) 
. 

+h. 

Y = e,;,,, (r - Tk+' ')+P\ Xk cosh(l)k+l (z - U) x 

rk* 

x &$_\ La,&, ,, (u - zk*’ xk*)’ fik;,, ,, (u - ‘k*1 xk*)9 u + &,I du + p*(...) 

fiere akll ,, (T - TV*, zk+), pkil a(~ - -rk*, zk*) is a solution of the 
system (1.1): with v = 0, which satisfies the initial condition (1.9). 

Let -rk (*I be the instant of time when the mapped point reaches the 

half-plane Sk (*I. b express Tk(*) in the form 

Tk(*) = z&? + @*'"' (yo, t,) + . . . 

Substituting T = TV into the equation (1.10) and keeping in mind 

that X(Tk(*)) = Xk, we obtain 

yk 
(2’ = ykp + -!.L 

Ykp s 
f (G y, z + to) dx + 

(1) 
Lk 

fk$ bk+l, ,, @ - $$ yg:‘), flk+l, ,, (u - rk$ yg’), u +t,,] ti 

x ok+1 ( =k+l x2---- 

.g, 
Ok+: 

rinh’ok+l (u - ‘k> du + 
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k+l (u - -@X+1 @- 

Hence, the formulas (1.3) retain their form also when the trajectory 
intersects the plane y = 0. 

Returning to the formulas (1.3) at the earlier time t, we have 

ydj) = Yk6j’ + -6. 
‘2) s f (2, y, t) dx + pa (. . .) 

L (j) 

k 

tk(jl ,= t 0 + Tp’ = to + t$’ + pQDk’j’ (y,, t*) + p’ (. * .) 

Let us now consider a mapping (transformation) of the half-plane 
S,(l) into itself. We assume that when ~1 = 0 the system (1.1) has a 
family of periodic. solutions L(ya, t,), which depends on the parameters 

y0 and t, and which is such that T’(y,) # 0. Be point transformation 
of the half-plane S,,(l) into itself has, in the neighborhood of the 

curve L which passes through the points P,(xn, ya, to), and P,(‘)[x~, yO, 
to +m T(yo)l, the following form 

Y,(l) =Ya+C 
E 

f (z, y, 4 dz + p2 (. . -1 = yo 4- pF G./o, to) -I- CC* (- . 4 

t “’ = to + mT (?/d + pQ, h,, toI + IL’ (- - 4 0 
(1.11) 
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where T(y,,) is the period of the periodic solution of the system (l.l), 

with ~1 = 0. This period depends on y,,. ‘Ihe number m is the number of 

turns of the curve 1‘ around the t-axis. 

Obviously, the following theorem is true. 

‘Theorem 1.1. In order that the point transformation (1.11) may have 

a fixed point 

which tends to the point P(x,, yoo, too) when ~1 goes to zero, it is 
necessary that the following conditions be fulfilled 

where L is a closed integral curve of the system (1.1) when P = 0, which 

passes through the points P(n,,, y,,‘, t,,O), P”‘(n,, y,,‘, too + 2nn), and 
where n/m is a rational fraction. 

‘Theorem 1.2. Let y,,O and t,, o be a solution of the system (1.12). If 

T’ (~a’) Ft.’ (Y& to”) # 0 

then the transformation (1.11) has a single fixed point 

PO (x01 YoO + I4419 toO + Ph) 

which tends to the point P(n,,, y,,‘, too) when ~1 goes 

Let us introduce the notation 

= hot to) = PF Ore, to) + P* (. . 4 

to zero. 

B (Yoc to) = - tin + T (yo) m + ~0 (~0, td + IL’ (. . J 

‘Ihe Jacobian 

ata, PI 
a (Yet Co) = - vT’ b/,0) 4, Q/,,‘, to”) + p* (. . .) 

evaluated at the point y,, = y,.,O + c~;y~, t0 = too t ptl is different from 
zero if v is sufficiently small. Hence, for small values of ~1, the 
system 

Yo = Yo + P QOV to) + IL’ (. l 4 

to + tin = to + mT hoI + yQ, tyo, te) + p* (. . 4 

is solvable for y0 and to, and the transformation (1.11) has a fixed 
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point Po(xo, yo, t,) . 

We shall elucidate further the conditions of stability of the fixed 
point for the transformation (1.11). ‘Ihe characteristic equation of the 
point transformation (1.11) is given (with an accuracy of second order 
infinitesimals in p) by 

where 

‘Ihe conditions for stability of the fixed point of the transformation 
(1.11) are 

1+p+q=-- wT’ tyo”) be’ bd’s G=) + pg 6 . 4 > 0 

I-p+qE4+p(...)>O 

q - 1~ p [-mT’ (~0”) J-1.’ tyo”, to”) -t f-h.’ (yo”, G’) f F,’ (Yo”, G’)l -t- 
+ pB t* l 4 < 0 

‘these conditions will be fulfilled for small enough p if 

The fixed point will be unstable if one of these inequalities is 
violated. 

Let us assume further that when I.I = 0 the system (1.1) has a family 

of periodic solutions L(y,, to> whose period depends on yO. 

In this case the curves L must lie entirely between two planes 
.X=x _* < 0 and n = nl > 0, where the function yr(x) has the form 

In this case the point transformation of the ha1 f-plane 8,’ ‘I (x = 0, 
y ’ 0) into itself in the neighborhood of the curve L which passes 
through the points jr,(O, yor t,) and P,(“[O, yo, to + m(lr/w, + dwz)l, 
has the form 
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yo(‘) = yo + f-J f (59 y, t) dz + pa (* ’ .) - Yo + PF Q/o, to) + pL’ (. . .) 
L 

t,(l) = to + m (:+a + 
(1.13) 

+f-{a:‘(- l)i 5 f(s,y,t)sino2(t- iG--to)dt+ 
i=o Lil 

+ -& mil(- l)*+l S f (2, y, t) sin o1 [ t -(i +I) c- ] } to dt +p’(...) E 
i=o Li2 

E to + m (5 + $) + P@ (Yo, toI + P* 6 . 4 

Here m is the number of turns of the integral curve L around the t- 
axis; Li, is the piece of the integral curve L included between the 

planes 

t = to + (n / a1 + 31. / 02) i + n I wsc t=t,+(n/o,+n/0Ji 

while Liz is the piece of the integral curve L included between the 

planes 

t=t,+(n/o,+n/0Ji+n/o,, t = to + (n / co1 + 3x / 02) (i + I) 

Obviously, if o1 = o2 then 

Q, (yo, to) = &\ f (G Y* 0. sin 01 (t - to) dt 
L 

It follows from the expression (1.13) that the point transformation 

(1.13) can possess a fixed point only if or and o2 are rational numbers. 

Let us assume that the number m satisfies the condition 

( 

2 
m- 

01 
+&)=2n 

where n is a positive integer. 

‘Ihen we can obtain the next theorem in an entirely analogous manner. 

Theorem 1.3. In order that the point transformation (1.13) may have 

a fixed point pO(O, yoo + py,, too 

QO, yoo, 

+ pt,) which tends to the point 
t,,O) when u approaches zero, it is necessary that 
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F (Y o”, too) = 0, @ (yoOt &I7 = 0 (1.14) 

Theorem 2.4. Let yoo and too be a solution of the system (1.15). If 

J-to’ (Y 0’9 to”) %a’ (YO’, to’) - F, (yo’, too) @te’ (yoo, too) + o 

then the transformation (1.13) has a single fixed point 

PO (09 YoO + PYIY too + l-4) 

which tends to the point P(O, yoo, too) when u approaches zero. This 

fixed point is stable if 

6, (yo=‘l to”) Go’ (yo’t t,‘) - Fto ’ boon to”) %,’ h/o”, t,=? > 0 

at.' (yo', to") + J't,,' (yo"v t,') < 0 

and it is unstable if any one of these inequalities is violated. 

2. Autonomous system which is near a piece-wise linear 
one. We shall now consider the system 

dx t dt = y, dy / dt = - 1c, (x) + 14 (xv y) (2.0 

Let 

J, (x) - UP + pi if ~7+<~<2+ 

fb ?/I =fp(x, 3) if q__1<z<q, Y>O (i=. . .--I, 0, I.. .) 

f (G Y) = p b, Y) if z+1<2<+ I!<0 

‘Ihe functions f,‘J’(x, y) (j = 1, 2) are analytic in x and y, while 

u is a small positive parameter. 

Let us denote by Si (I) the half-lines x = xi when y > 0, and by Sit2) 

the half-lines x = ni when y < 0, and let us consider the phase trajec- 

tories of the system (2.1) when u = 0 and when u # 0 which satisfy the 

initial conditions 

x = x0, Y = Yo if t=O P-2) 

Suppose that the phase trajectory of tl,e system ,(2.1) with ,p = 0 
intersects the half-lines S,(j) at the points Pk,,(l)(~k, ykO(‘)), and 

when u # 0 it intersects them at the points P,(j)(x,, Yk(j)). 

J,et us assume that when u = 0 the system (2.1) has a family of 
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periodic solutions L(yO) which depend on the parameter yo. ‘lhen the 
point transformation of the half-line So(‘) into itself in the neighbor- 
hood of the closed curve L will have the form 

!dl) = Yo + $- \ f (5, y> dr + CL” (. . -) = ~0 + PF (~0) + $ (- . 4 (2.3) 
L 

where L = L(yO) is a closed integral curve passing through the point 

P&x,, YJ. 

The following theorems are valid. 

7heorem 2.1. In order that the transformation (2.3) with M small 
enough may have a fixed point 

PO (209 YoO + lv3 

which tends to P(x,, yoo) when p goes to zero, it is necessary that the 

condition 

be satisfied. 

F (y,o) = 0 (2.4) 

Theorem 2.2. Let y0 ’ be a solution of the equation (2.4). If 
F’(y,‘) y 0 then the transformation (2.3) has a single fixed point 

P,($ yoo + pyr) which tends to the point P(x,, yoo) when u goes to 
zero. This fixed point is stable if F’(y,‘) < 0, and it is unstable if 
F’(y,‘) ’ 0. 

The obtained conditions for the existence and stability of a periodic 
solution of the system (2.1) are analogous to the corresponding condi- 
tions given in [41 f or systems which are near to Hamiltonian systems. 

If the functions y(x) and f(x, y) are of period 2n in n, then the 
phase space of the system (2.1) will be cylindrical if one considers 
the lines x = x,, and x = 2r + n0 as coincident. ‘lheorems 2.1 and 2.2 in 
this case will yield necessary and sufficient conditions for the exist- 
ence of a fixed point which corresponds to the periodic solution that 
encloses the cyl inder . ‘lbe curve L(y,O) in equation (2.4) in this case 
will be a closed integral curve of the system (2.1) with u = 0 which 
passes through the point P(r,,, y,,‘) and goes around the cylinder. 

3. Example. Let us consider an equation from the theory of electrical 

machines [5-81 

(P + a 11- Pe’ (TOI i + 8 w = T (h>O, r>O) 
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where the function E)(q) is of period 3x, with the piece-wise linear 
approximation 

8 (cp)‘= 81 (cp) z (- qk $ cp + (- lp-X 2k 

(2k --1)$<cp<(zk+1) $- (A=. . .- 2, 0. 1. , .J 

For the phase space we will take a strip located between the straight 
lines 9 = - A and 9 = x. The points of these two lines with the same 
ordinates will be considered to be identical. We introduce a small posi- 
tive parameter by setting h = MA,, y = py,. and we go over to the system 
which is close to the piece-wise linear one 

A study of the periodic solutions of the system (3.1) makes it 
possible for us to form rigorously a qualitative picture of the division 
of the phase space into trajectories for small values of A and y, and to 
explain how this picture changes with a change of the parameters. 

When ~1 = 0 the trajectories of the system (3.1) have either the form 
of closed curves enclosing a state of equilibrium (of the center type) 
at the point 9 = 0, y = 0, or they are closed curves made up of pieces 
of ellipses and hyperbolas enclosing the phase space (the cylinder). 
These two regions are separated by separatrices which are composed of 
pieces of straight lines and ellipses passing from saddle to saddle (in 
the points (- TI, 0). (x, 0) the system (3.1) with i.! = 0 has Simple 
saddles). 

If 1.4 f 0, but arbitrarily small, the closed curves enclosing the 

state of equilibrium or the phase cylinder become spirals, and only 
certain ones of the integral curves remain closed, that is, they become 
limit cycles. The separatrices which together with the state of ewi- 
librium form a closed contour when ~1 = 0. will not form such a COntOUr 
when p # 0; they, too, will become spirals that close in on a limit 
cycle or on a state of equilibrium, or else recede to infinity. A know- 
ledge of the character and distribution of the limit CYCleS makes it 
possible to determine completely the qualitative structure of the divi- 
sion of the phase space into the trajectories. 

The system (3.1) may have cycles that enclose the cylinder as well 
as cycles that enclose a state of equilibrium O,(~ly,*/2. 0). We shall 
try to find the cycles that enclose the cylinder. If we apply Theorem 
2.1, we obtain 

F1(Yo”)-${2S [Yo--o(i + P -$$]d~ +2 \ [TO--+~~)Y] @} (3.2) 
4 L 



Here L, and L, are parts of the integral curve of the system (3.1) 
with p = 0 which passes through the point P(- rr, ye’). These parts L, 
and L, are located in the intervals - ‘II < p d - v/2 and - v/2 d q~ < 0, 
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respectively. The equations of the curves L, and L, are 

respectively. 

The integration is performed in the direction of the motion along the 
trajectories. If ye ’ > 0, the evaluation of the integrals on the right- 

hand side of equation (3.2) yields 

FI (~0") = 

For the purpose of determining the number of roots of the equation 

$1 (h) = 0 (3.3) 

we find 

Having investigated the behavior of the function VI(h) in the inter- 
val 0 < h < Q), we come to the conclusion that for 0 < h < Q) the function 
yI(h) is monotonically decreasing if p>- v/2, and that it has one 
maximum if p < - n/2. This shows that if 

4~o+~o~~~2~p-2---n22)>~ 

the equation (3.3) has one positive root. The system (3.1) will then 
have one stable limit cycle which enclosed the cylinder in the upper 
half of the phase space. In the region of the space of the parameters 
A e, ye and p. determined by the relations 
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*1’ (hf = 0, 91(h) > 0 

4Yo + J.0 J/qP-z-+0 

the equation (3.3) has two positive roots. The system (3.1) then will 
have two limit cycles in the upper half of the phase space. Whereby to 
the larger root of equation (3.3) there will correspond a stable limit 
cycle, while to the smaller root, an unstable limit cycle. 

Fig. 1. 

Let us now try to find the limit cycles which enclose the cylinder 
and are located in the lower half of the phase space where yu” < 0. 

Integrating expression (3.2). and setting (ye’)‘/2 = h, we obtain 

Fz (?/co) = -$ - 2XYo --k~[2$3,f$Fh+h(*+fq x 

XIn(~l/;+)‘~+(~-~pj(2h+n) sin-’ ,2~&]}-~ 

In a way analogous to the one above. one can show that for yu > 0, 
h, > 0 the system (3.1) will not have more than one limit cycle which 
encloses the cylinder in the lower half of the phase space. If 
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then the system (3.1) wiI1 have a limit cycle enclosing the phase 
cylinder in the lower half of the phase space. 

Finally, let us find a limit cycle that encloses a state of equi- 
librium. 

Applying Theorem 2.1, we obtain 

Here Ll and L, are parts of an integral curve of the system (3.1) 
with H = 0 which passes through the points P’(- u/2, yl”) (0 < yl” < 
\I (x12)). These parts Ll and L, are located in the intervals -TI<(P<-u/2, 
and -x/2 *rs g < 0, respectively. 

The equations of L, and L, have the form 
(3.5) 

From the expression (3.4) it follows that if (1 - Z@/u)(l + 2@/v) > 0 
then the equation F,(yl’) = Cl has no real roots. 

Suppose that 1 - 2pln ( 0. It is easily seen that 

%(hI = Wl&) - 4nr0, W (Al) = 2%’ (W %i” (hi) = 2w (hl) 

For values of hl which satisfy the condition (3.5). we have 

Fro@ this we conclude that if 1 - 2&k < 0, and p - 2 - n/2 < 0, then 
there exists just one stable limit cycle which encloses a state of equi- 
librium. In an analogous manner it can be shown that if 1 - 2P/r > 0 the 
system (3. I) has no cycles which enclose a state of equilibrium. 

For the Purpose of explaining the picture of the phase trajectories 
we note that the state of equilibrium O~(~yo~/2, 0) will be a stable 
focus if 

pLha(i--@In)>0 
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and it will be an unstable focus if fih,(l - 2p/n) < 0. 
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Fig. 2. 

Figure 1 shows the division of the space of the parameters he, ye and 

p into regions that correspond to definite qualitative pictures of the 

phase trajectories. 

In the region (1) 

(4To + A, V/nl:! (P - 2 -“Jr/2)<0, 1+23/n<o, +1’(h)=& lCll@)>O) 

the system (3.1) has two limit cycles that enclose the cylinder in the 

upper half of the phase space. The upper cycle is stable while the lower 

one is unstable. 

In the region (21 

(To > 0‘ 47, + &I 
” y n 7 / L (8 - 2 - n J 2) < 0, 1 - 23 ; n > 0, ‘$1 (h) = 0, 4% th) < 0) 

the system (3.1) has no limit cycles. 

In the region (31 

(iv, > 0, ir,, + 1, T/xi’ (j3 - 2 - x J 2) > 0, 1 - 23 / ,‘I > 0) 

the system (3.1) has one stable cycle enclosing the cylinder in the 

upper half of the phase space. 
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In the region (4) 

(h,>O, 4r,+h,I/n/p-2---/22)>0, 1-@/n<O, P-2--n/2<0) 

the system (3.1) has one stable limit cycle which encloses a state of 

equilibrium, and a stable limit cycle enclosing the cylinder in the 
upper half of the phase space. 

In the region 151 

(To>O, ?b,>O, 4”10+5,~~/:!8-2---n22)<0, 1-2zp/n<O) 

the system (3.1) has one stable limit cycle enclosing a state of equi- 
librium. 

In the region (6) 

(P-2--/2200, b>O, RI>% -4%+a, V/x(2-2---/22)<0) 

the system has one stable limit cycle in the upper half of the phase 
space. 

In the region (7) 

(T0>6, %>0, -44r0+&Vrc12(P-2---/ 2)>0) 

the system (3.1) has two stable cycles enclosing the cylinder. One of 
them is located in the lower, the other one in the upper half of the 
phase space. 

The qualitative pictures of the phase trajectories for the enumerated 
regions are shown in Fig. 2. 

Let us consider the qualitative pictures of the phase trajectories on 
the bifurcated surfaces. 

On the surface (A), determined by the relations 

+I (4 = 0, rliW=O 

the system has a semistable limit cycle which encloses the cylinder in 
the upper half of the phase space. 

On the surfaces (B) and (C) 

the limit cycles that enclose the cylinder in the upper or lower halves 
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of the phase space will run into separatrices 

saddle. 
which go from saddle to 

Fig. 3. 

7) * -_- __----_ __--- s FI!!!! L 
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On the plane (D) (p - 2 - n/2 = 0). the limit cycle that encloses the 

state of equilibrium O,(~y,v/2, 0) runs into the separatrix which passes 
from one saddle into the same saddle. On the surface (E) (1 - 2p/vr = 0) 
the system has a state of equilibrium of the center type at the point 

Figure 3 represents the qualitative pictures of the 
tories that correspond to the bifurcated values of the 
numbers in the braces denote the regions on the common 
the system (3.1) has the indicated qualitative picture 
trajectories. 

phase traj ec- 
parameters. The 
boundary of which 
for the phase 

In conclusion I thank N.N. Bautin for valuable advice. 
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